[CLASS XII CHEMISTRY PRACTICALS]

Evaluation Scheme) 2022-2023 Examination Marks

Volumetric Analysis	08
Salt Analysis	08
Content Based Experiment	06
Class record and viva	04
Project and viva	04

Note:-

1. Chemical equations of Experiment 3 to 14 are to be written on blank pages.

2. Observation table of experiment 13 to 16 are to be drawn on blank pages.

- 3. Project work (4 marks) is also included in the practical syllabus. For project work, contact the teacher for the topic.
- 4. Project report should be hand written.
- 5. Start each experiment form a new page.

EXPERIMENT – 1 Classification of Anions

Group	Group	Observation	Inference
	Reagent		
Α	Dilute H ₂ SO ₄	a) Colourless, odourless gas with brisk effervescence (CO_2) which turn lime water milky.	$CO_3^{2^-}$ (Carbonate)
		b) Colourless gas with rotten egg like smell (H_2S) which turns lead acetate paper black.	S^{2^-} (sulphide)
		c) Colourless gas with smell of burning sulphur (SO_2) which turns acidified dichromate paper green.	$SO_3^{2^-}$ (Sulphite)
		d) Brown coloured gas (NO_2) which turns ferrous sulphate solution black or brown.	NO_2^- (Nitrite)
		e) Colourless gas with vinegar like smell.	CH ₃ COO ⁻ (Acetate)
В	Conc. H ₂ SO ₄	a) Colourless pungent smelling gas (HCl) which gives white dense fumes with glass rod dipped in NH_4OH .	Cl^- (Chloride)
		b) Violet coloured vapours (I_2) which turns starch paper blue.	I⁻ (Iodide)
		c) Reddish brown gas (NO ₂) having pungent smell (On adding opper turning, fumes becomes intense) NO_3^- (Nitrate)	
		d) Brown colour gas with pungent smell (Br_2) which turns starch paper yellow. a) Colourlass adourlass gas with brick afferwascones Br^{-} (Bromide)	
		e) Colourless, odourless gas with brisk effervescence (CO + CO ₂) which turns lime water milky and burns on the mouth of test tube with blue flame. $C_2 O_4^{2-}$ (Oxalate)	
C	BaCl ₂	White ppt. of $BaSO_4$ is formed.	SO_4^{2-} (sulphate)
D	Ammonium molybdate 3 (NH ₃) ₄ MoO ₄	Cannary yellow ppt. of phospho ammonium molybdate $(NH_4)_3$ PO ₄ .12 MoO ₃ . $6H_2O$	PO_4^{3-} (phosphate)

EXPERIMENT – 2 Classification of Cations

Group	Group Reagent	Radical	PPt/Smell	Colour
Zero	NaOH	$N\!H_4^+$	Smell of NH ₃	-
Ι	Dil. HCl	Pb^{+2}	PbCl ₂	White
II	H_2S gas in acidic	Pb^{+2}	PbS	Black
	Medium	As^{3+}	As_2S_3	Yellow
		Cu^{+2}	CuS	Black
		Cd^{+2}	CdS	Yellow
III	NH_4Cl (s) in presence of	Fe^{2+}	Fe(OH) ₂	Light green
	NH ₄ OH	Fe ³⁺	Fe(OH) ₃	Reddish brown
		Al^{3+}	Al(OH) ₃	Gelatinous white
IV	H ₂ S gas in basic medium	Ni ²⁺	NiS	Black
		Co ²⁺	CoS	Black
		Mn^{2+}	MnS	Flesh colour
		Zn^{2+}	ZnS	Dirty white
V	$(NH_4)_2 CO_3$ in presence of NH_4OH	Ba^{2+}	BaCO ₃	White
		Ca ²⁺	CaCO ₃	White
		Sr^{2+}	SrCO ₃	White
VI	Na ₂ HPO ₄ in presence of NH ₄ OH	Mg^{2+}	MgNH ₄ PO ₄	White

EXPERIMENT – 3

Aim :- To analyse the given inorganic salt for acidic and basic radicals.

Preliminary Investigation

Physical State	Solid
Colour	White $(Cu^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Mn^{2+}, Co^{2+}absent)$
Odour	Ammonium smell (may be NH_4^+)
Solubility	Soluble in water
Flame Test	No Characteristic flame (Pb ²⁺ , Cu ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ ,
	Zn^{2+} absent)

(A) Identification of Acidic Radical

(a) Preliminary test :

Experiment	Observation	Inference
1. Salt solution + dil H ₂ SO ₄	Colourless, colourless gas with brisk effervescence which turn lime water milky	Group A anion (CO_3^{2-}) may be present)
Confirmative test :		
1. BaCl ₂ Test : Salt solution +	White ppt of BaCO ₃	CO_3^{2-} Confirmed
$BaCl_2$		
2. $MgSO_4$ Test : Salt solution +	White ppt of MgCO ₃	CO ₃ ²⁻ Confirmed
$MgSO_4$		

Experiment	Observation	Inference
1. Salt Solution + NaOH+ Heat	Smell of NH ₃	
2. Place a red litmus on the mouth of est tube.	Red litmus turns blue	Zero group present $(NH_4^+ may be)$
Confirmative test		
Experiment	Observation	Inference
. Nessler's reagent test : Salt +	Reddish brown ppt. is formed	NH_4^+ confirmed.
Solution + NaOH + Nessler's Reagent		+
2. NaOH test :	Smell of NH ₃	
Salt Solution + NaOH + Heat.	Dense white fumes of NH ₄ Cl are	NH_4^+ Confirmed.
Bring a glass rod dipped in conc. HCl	formed.	
Chemical Reactions : - Acidic Radical Preliminary Test :- 1. $(NH_4)_2 CO_3 + H_2 SO_4$	$(NH_4)_2 SO_4 + CO_2 \uparrow H_2O$	
2. $Ca(OH)_2 + CO_2 \rightarrow CaC$	$CO_3 + H_2O$	
Confirmative Test	ے د	
1. $BaCl_2$ Test :		
$(NH_4)_2 CO_3 + BaCl_2$	$\rightarrow BaCO$ $+2NH$ Cl	
4.2 5 2		
2- $MgSO_4$		
$(NH_4)_2 CO_3 + MgSO_4 -$	$\longrightarrow MgCO_3 \downarrow + (NH_4)_2 SO_4$	
2. Basic Radical (a) Preliminary Test :-		
(1/2 3	$DH \longrightarrow Na_2CO_3 + 2H_2O + 2NH_3 \uparrow$	
NH ₃ + Red litmus	\rightarrow Litmus turns blue	
(b) Confirmative test :-		
1. Nessler's Test :		
$K_2HgI_4 \longrightarrow 2KI +$	Hg I ₂	
(Nessler's Reagent)		
$HgI_2 + NH_3 \longrightarrow N_1$	$H_2HgI + HI$	
$2NH_2HgI + H_2O$ —	$\rightarrow \mathrm{NH}_2$	
	/	
	Hg	
	$O + NH_4I$	
	/	
	Hg	
	Ţ	
2. NaOH Test	Ï	
2. NaOH Test (<i>NH</i> .) <i>CO</i> . + 2 <i>NaOH</i>	-	
	$\rightarrow Na_2CO_3 + 2H_2O + 2NH_3 \uparrow$	

Result : The given inorganic salt contains following Acidic Radical : - $CO_3^{2^-}$

Basic Radical : NH_4^+

Aim : To analyse the given salt of acidic and basic radical. **Preliminary Investigation** Physical state Solid : white $(Cu^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Mn^{2+}, Co^{2+} absent)$ Colour : Odour Ammonium smell (NH_4^+ may be present) : Solubility Soluble in water : No characteristic flame (Cu²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Pb⁺², Zn²⁺absent) Flame Test :

(A) Identification of Acidic Radical

a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ solution	No gas is evolved	Group A anion $\left(CO_3^{2-}, CH_3COO^{-}, NO^{-}_2, SO_3^{2-}, S^{2-}, absent\right)$
2	Salt + Conc H ₂ SO ₄ + Heat Bring a glass rod dipped in NH ₄ OH	Colourless gas with pungent smell which gives dense white fumes of NH ₄ Cl	Group B anion (Cl ⁻ may be)

(b) Confirmative Test:

	Experiment	Observation	Inference
1	AgNO ₃ test : Salt Solution +	Curdy white ppt	Cl ⁻ confirmed
	AgNO ₃ .		
	Dissolve the ppt in NH ₄ OH	White ppt soluble in	
		NH ₄ OH	
2	Chromyl chloride Test:	Reddish orange gas	Cl ⁻ confirmed
	a) Salt + Solid $K_2Cr_2O_7$ (1:2)	is evolved	
	+ conc. H ₂ SO ₄ + Heat		
	b) Pass these vapour through	Solution be comes	
	NaOH	yellow	
	c) Add acetic acid and lead	Yellow ppt of lead	
	acetate to yellow solution	chromate is formed.	

Identification of Basic Radical

Preliminary Test:

	Experiment	Observation	Inference
1	Salt solution + NaOH +	Smell of Ammonia	Zero group (NH_4^+)
	Heat		May be
2	Place a red litmus on the	Red litmus turns	
	mouth of test tube	blue	

Confirmative Test:

	Experiment	Observation	Inference
1	Nessler Test: Salt solution + NaOH +	Reddish brown ppt is	NH ₄ ⁺ Confirmed
	Nessler's reagent	formed	
2	NaOH Test : Salt Solution + NaOH + Heat	Smell of NH ₃	NH ₄ ⁺ Confirmed
	Bring a glass rod dipped in dil HCl		
		white dense fumes of	
		NH ₄ Cl are formed	

Preliminary Test :

$$2NH_4Cl + H_2SO_4 \longrightarrow (NH_4)_2SO_4 + 2HCl$$

$$NH_4OH + HCl \longrightarrow NH_4Cl + H_2O$$

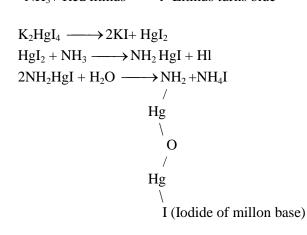
(White dense fumes)

Confirmative Test :

AgNO₃ test $NH_4Cl + 2AgNO_3 \rightarrow 2AgCl \downarrow + NH_4NO_3$ (Curdy white ppt) $AgCl + NH_4OH \longrightarrow [Ag(NH_3)_2] Cl + 2H_2O$ (Diammine silver (I) Chloride)

Chromyl Chloride Test :

 $K_{2}Cr_{2}O_{7} + H_{2}SO_{4} \longrightarrow K_{2}SO_{4} + 2Cr_{2}O_{3} + H_{2}O$ $2NH_{4} + H_{2}SO_{4} \longrightarrow (NH_{4})_{2}SO_{4} + 2HCl$ $CrO_{3} + 2HCl \longrightarrow Cr_{2}O_{2}Cl_{2} \uparrow + H_{2}O$ (Vapour)


 $CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 2NaCl + H_2O$ (Sodium Chromate (Yellow Solution)

 $Na_2CrO_4 + Pb(CH_3COO)_2 \xrightarrow[CH_3COOH]{dit.} PbCrO_4 + CH_3COONa$ (Lead Chromate)

Chemical Reaction for Basic Radical Preliminary Test :

 $NH_4Cl + NaOH \xrightarrow{\Delta} NaCl + H_2O + NH_3 \uparrow$ NH₃+ Red litmus ----- Litmus turns blue

Confirmative Test : Nessler's Test :

NaOH Test :

 $NH_4Cl + NaOH \longrightarrow NaCl + H_2O + NH_3(g)$ $NH_3 + HCl \longrightarrow NH_4Cl$ (Dense white fumes)

Result : The given inorganic salt contains

Acidic Radical Cl⁻ Basic Radical NH₄⁺

Aim : To analyze the given inorganic salt for acidic and basic radical.

Preliminary Investig	gation	
Physical state	:	Solid
Colour	:	Creamish white (Cu^{2+} , Co^{2+} , $Ni^{2+}Fe^{2+}$, $Mn^{2+}Fe^{3+}$ absent)
Odour	:	No characteristic odour $(NH_4^+, S^{2-},$
		CH_3COO^- absent)
Solubility	:	Soluble in water
Flame Test	:	Dull Bluish white flame is obtained (Pb ²⁺ may be)
(A) Identificatio	n of Acio	lic Radical

dentification of Acialc Radical (\mathbf{A})

a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ solution	No gas is evolved	Group A $(CO_3^{2^-}, CH_3COO^-, NO_2^-, SO_3^{2^-}, S^{2^-}, absent)$
2	Salt + $Conc^n H_2SO_4$ + Heat	Brown Colourled gas (NO ₂) is evolved	Group B (NO_3^- may be present)
(h) (Confirmative test:		

	Experiment	Observation	Inference
1	Diphenyl amine test :	Deep blue coloured	NO_3^- - confirmed
	salt + $Conc^n$ H ₂ SO ₄ + diphenyl amine	solution	
2	Ring Test :	Brown ring is formed at	NO_3^- - confirmed
	Salt + Freshly prepared $FeSO_4 + Conc^n$	the junction of two liquids	
	H_2SO_4 along the side of the test tube	_	

Identification of Basic Radical

a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH	No Smell of ammonia	Zero group $[NH_4^+]$ absent
2	Salt Solution + dil HCl	White ppt of PbCl ₂ is	I group [Pb ²⁺ may be]
	Filter the above ppt and boil it with water	formed	
	and divide into parts.		

Identification of Basic Radical

a- Confirmative test :

	Experiment	Observation	Inference
1	KI test : 1 st part + KI	Pb I ₂ (Yellow Ppt)	Pb ²⁺ Confirmed
2	$K_2CrO_4Test: 2^{nd} part + K_2CrO_4$	Yellow ppt of PbCrO ₄ is	Pb ²⁺ Confirmed
		formed	

Chemical reaction for Acidic Radical

Preliminary Test : Pb $(NO_3)_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HNO_3$

$$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + H_2O$$

Confirmative Test :

i) **Ring Test** Pb $(NO_3)_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HNO_3$

 $6FeSO_4 + 3H_2SO_4 + 2HNO_3 \longrightarrow 3Fe_2 (SO_4)_3 + 4H_2O + 2NO_3$

$$FeSO_4 + NO \longrightarrow FeSO_4 . NO$$

(Nitroso ferrous sulphate)

ii) Diphenyl amine Test $2(C_6H_5)_2 \text{ NH} + [O] \longrightarrow (C_6H_5)_2 \text{ N} - \text{N} (C_6H_5)_2 + H_2O$

(Diphenyl amine hydrazine)

(B) Identification of Basic Radical

 $Pb (NO_3)_2 + 2HCl \longrightarrow PbCl_2 \downarrow + 2HNO_3$ **Preliminary Test :** (White)

Confirmative Test :

i) KI Test : $PbCl_2 + 2KI \longrightarrow PbI_2 \downarrow + 2KCI$ ii) K_2CrO_4 Test : $PbCl_2 + K_2CrO_4 \longrightarrow PbCrO_4 \downarrow + 2KCl$ (Yellow ppt.) Result : The given inorganic salt contains Acidic Radical NO_3^-

Basic Radical Pb^{+2}

Aim : To analyze the given inorganic salt for acidic and basic radical.

Preliminary Investigation		
Physical state	:	Solid
Colour	:	Blue (Cu ²⁺ may be)
Qdour	:	No characteristic odour (absence of NH_4^+ , S ²⁻ , CH ₃ COO ⁻)
Solubility	:	Soluble in water.
Flame Test	:	Bluish green flame (Cu ²⁺ may be)

(A) Identification of Acidic Radical

a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ solution	No gas is evolved	Group A
			$(CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^{-}CH_3COO^{-}absent)$
2	$Salt + Conc^n H_2SO_4 + Heat$	No gas evolved	Group B anions
			$\left(Cl^{-}, Br^{-}, I^{-}, NO_{3}^{-}, C_{2}O_{4}^{2-} areabsent\right)$
3	Salt solution + $BaCl_2$ solution	White Ppt	Group C (SO_4^{2-}) May be

(b) Confirmative test :

	Experiment	Observation	Inference
1	BaCl ₂ test : Salt Solution + BaCl ₂ Solution Add dil. HCl or dil HNO ₃	White Ppt formed	SO_4^{2-} confirmed
		Ppt remains insoluble	
2	Lead Acetate Test : -	White ppt. formed	SO ₄ ²⁻ confirmed
	Salt Solution + lead acetate solution Add ammonium acetate Solution (CH_3COONH_4) to above ppt.	Ppt becomes soluble	

Identification of basic Radical

a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH + heat	No smell of ammonia	Zero Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No white Ppt	Group I, (Pb ²⁺ absent)
3	Above solution $+ H_2S$ gas	Black Ppt is formed	Group II, (Cu ²⁺ / Pb ²⁺ may be present)
4	Dissolve above ppt in HNO ₃	Solution turms bluish green	
5	Divide the above solution in 2 parts .		

(b) Confirmative test :

	Experiment	Observation	Inference
1	NH_4OH test : 1 st part +	Deep bule colour	Cu ²⁺ confirmed
	NH ₄ OH		
2	Potassium ferrocynide test :	Chocolate brown	Cu ²⁺ confirmed
	IInd part + $K_4[Fe(CN)_6]$	ppt of Copper	
		ferrocyanide is	
		formed	

Acidic Radical

1- BaCl₂ Test: CuSO₄ + BaCl₂ \rightarrow BaSO₄ \downarrow + CuCl₂ (White Ppt) 2- (CH₃COO)₂ Pb Test : CuSO₄ + (CH₃COO)₂ Pb \rightarrow PbSO₄ \downarrow +2(CH₃COO)₂ Cu (White Ppt) PbSO₄ ↓ +2CH₃COONH₄ → (CH₃COO)₂ Pb + (NH₄)₂SO₄ (b) Basic radical

 $Cu^{2+} + H_2S \rightarrow CuS + 2H^+$ Black ppt

 $3CuS + 8HNO_{3} \longrightarrow Cu(OH)_{2} + 2NO + 4H_{2}O + 3S$ 1. NH₄OH test $Cu(NO_{3})_{2} + 4NH_{4}OH \longrightarrow [Cu(NH_{3})_{4}](NO_{3})_{4} + 4H_{2}O$ Deep blue ppt

2. $K_4[Fe(CN)_6 \text{ test}$ $2Cu(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow Cu_2[Fe(CN)_6] + 4KNO_3$

Result : The given inorganic salt contains. Acidic Radical – SO_4^{2-}

Basic Radical Cu^{2+}

EXPERIMENT - 7

Aim : To analyze the given inorganic salt for acidic and basic radical.

Physical state	:	Solid
Colour	:	White $(Cu^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Mn^{2+}, Co^{2+}absent)$
Qdour	:	No characteristic odour (absence of NH_4^+ , S^{2-} , CH_3COO^-)
Solubility	:	Soluble in water.
Flame Test	:	No characteristics flame $(Pb^{+2}, Sr^{+2}, Cu^{2+}, Ca^{+2}, Ba^{+2}, Ni^{+2}, Zn^{2+}absent)$

(A) Identification of Acidic Radical

a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄	No gas is evolved	Group A $\left(CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^{-}, CH_3COO^{-}\right)$
			Absent
2	Salt + $Conc^n H_2SO_4$ + Heat	No gas evolved	Group B anions $(Cl^{-}, Br^{-}, I^{-}, NO_{3}^{-}, C_{2}O_{4}^{2} \ absent)$
3.	$Salt + BaCl_2$	White ppt is formed	Group C anion (SO_4^{2-} may be)

(b) Confirmative test :

	Experiment	Observation	Inference
1	$BaCl_2$ test :Salt Solution + $BaCl_2$	White Ppt	SO_4^{2-} confirmed
	Add dil HCl to above ppt	Ppt remains insoluble	
2	Lead Acetate Test : -		
	Salt Solution + $(CH_3COO)_2$ Pb. solution	White ppt.	SO_4^{2-} confirmed
	Add CH ₃ COO NH ₄ to above ppt.	Ppt dissolves in	~ 4 •
		ammonium acetate.	

B- Identification of Basic Radical (a) Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH +	No smell of NH ₃	Zero
	heat		Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No Ppt	Group I, (Pb ²⁺ absent)
3	To the above solution pass H_2S gas	No ppt.	Group II (Cd^{2+} , Pb^{2+} , As ²⁺ Cu ²⁺ absent)
4	Boil H_2S gas and add NH ₄ Cl + NH ₄ OH & divide the Solution in two parts.	White gelatinous ppt.	Group III (Al ³⁺ may be)

(b) Confirmative test:

	Experiment	Observation	Inference
1	Take test : 1^{st} part + dil + HCl + 2 drops of	Blue ppt.floats over	Al ³⁺ confirmed
	blue litmus + NH_4OH	colourless solution	
2	Ammonium chloride Test :	Formation of white	Al ³⁺ confirmed
	IInd part + NH_4Cl + Boil the solution	gelatinous ppt.	

Acidic Radical

1. BaCl₂ test :

$$Al_{2}(SO_{4})_{3} + BaCl_{2} \longrightarrow BaSO_{4} \downarrow +2AlCl_{3}$$

White ppt
2. (CH_{3}COO)_{2} Pb test :
$$Al_{2}(SO_{4})_{3} + (CH_{3}COO)_{2} Pb \longrightarrow PbSO_{4} \downarrow +Al(CH_{3}COO)_{3}$$

White ppt
$$PbSO_{4} \downarrow +2CH_{3}COONH_{4} \longrightarrow (CH_{3}COO)_{2} Pb + (NH_{4})_{2}SO_{4}$$

Basic Radical

 $Al_{2}(SO_{4})_{3} + NH_{4}OH \longrightarrow Al(OH)_{3} \downarrow + (NH_{4})_{2}SO_{4}$ Al(OH)_{3} + 3HCl \rightarrow AlCl_{3} + 3H_{2}O AlCl_{3} + 3NH_{4}OH \longrightarrow Al(OH)_{3} \downarrow + 3NH_{4}Cl

White ppt

Result : The given inorganic salt contains. Acidic Radical – SO_4^{2-}

Basic Radical Al^{+3}

Aim : To analyze the given inorganic salt for acidic and basic radical.

Preliminary Investigation				
Physical state	:	Solid		
Colour	:	White $(Cu^{2+}, Fe^{+2}, Fe^{+3}, Ni^{+2}, Mn^{+2}, Co^{+2} are absent)$		
Qdour	:	No characteristic above $(S^{2-}, NH_4^+, CH_3COO^-)$ absent		
Solubility Flame Test	: :	Soluble in water. Green flashes (Zn ²⁺ may be)		

(A) Identification of Acidic Radical a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄	No gas is evolved	Group A $(CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^{-}, CH_3COO^{-} absent)$
2	Salt + Conc ⁿ H ₂ SO ₄ + Heat	Colourless gas having pungent smell which gives white dense fumes with glass rod dipped in NH ₄ OH	Group B anions (Cl ⁻ may be)

(b) Confirmative test :

	Experiment	Observation	Inference
1	Chromyl chloride test : Salt $+ K_2Cr_2O_7 (1 : 2) +$ conc. $H_2SO_4 +$ heat	Orangish red or reddish orange vapour of chromyl chloride are evolved	Cl [−] Confirmed
	Pass the vapour in a test tube containing NaOH solution Add $(CH_3COOH + (CH_3COO)_2 Pb intoabove solution$	Yellow solution of Na_2CrO_4 is obtained Yellow ppt of lead chromate is formed	
2	AgNO ₃ Test : Salt Solution + AgNO ₃	White ppt.	Cl [−] confirmed
	Dissolve ppt. in NH₄OH	ppt becomes soluble.	

B- Identification of Basic Radical

(a) Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH +	No smell of NH ₃	Zero Group,
	heat		$\left(NH_{4}^{+} absent\right)$
2	Salt solution + dil . HCl	No white Ppt	Group I (Pb ²⁺ absent)
3	To the above solution	No ppt.	Group II, $(Cu^{2+}, As^{+3},$
	pass H_2S gas		Cd^{+2} , Pb^{+2} absent)
4	Boil above solution to	No ppt.	Group III [Fe ²⁺ ,
	remove H_2S and add		Fe ³⁺ , Al ³⁺ absent]
	$NH_4Cl(s) + NH_4OH in$		
	exess.		
5	To above test tube pass	White ppt is	Group IV [Zn ²⁺ may
	H_2S gas	obtained	be]
	Dissolve the white ppt in		
	HCl and divide it into 2		
	parts.		

(b) **Confirmative test :**

(b) Co	onfirmative test :				
	Experiment	Observation	Inference		
1	$K_4[Fe(CN)_6]$ Test : 1 st part + $K_4[Fe(CN)_6]$	White ppt of zinc	Zn ⁺² conformed		
-	and are are	ferrocyanide			
2	NaOH Test : 2 nd part + NaOH	Bluish white ppt.	Zn ⁺² confirmed		
	cal reaction for Acidic Radical				
	inary Test : $7.50 \pm 200^{\circ}$				
2	$+H_2SO_4 \longrightarrow ZnSO_4 + 3HCl\uparrow$				
HCl +	$-NH_4OH \longrightarrow NH_4Cl + H_2O$				
	(White dense fumes)				
	mative Test :				
i) Chr	romyl chloride test : $K_2Cr_2O_7 + H_2SO_4 - \Delta$	$\Rightarrow K_2 SO_4 + 2Cr_2 O_3 + H_2 O$			
$ZnCl_2$	$+H_2SO_4 \xrightarrow{\Delta} ZnSO_4 + 2HCl$				
CrO ₂ -	+2HCl $^{\Theta} \rightarrow CrO_2Cl_2 \uparrow +H_2$				
3	(red vapours of chromyl chlo	ride)			
CrO($Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 2NaCl + H_2$				
$e_1 e_2 e_3$	$\frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}$	0			
Na ₂ Ci	$rO_4 + Pb(CH_3COO)_2 \xrightarrow{Dil.} PbCrO_4 + CH_3COOH$	₃ COONa			
ii) Silv	ver Nitrate Test				
ZnCl ₂	$+2AgNO_{3} \longrightarrow 2AgCl \downarrow +Zn(NO_{3})_{2}$ (Curdy white ppt.)				
AgCl	$+2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + 2H_2O$				
	mine silver (I) chloride) {Soluble complex]				
-	cal reaction for Basic Radical				
(a) Pre	eliminary Test :				
$ZnCl_2$	$+H_2S \longrightarrow ZnS \downarrow +2HCl$				
-	$2HCl \rightarrow ZnCl_2 + H_2S$				
	nfirmative Test :				
	1 $K_4[Fe(CN)_6]Test: ZnCl_2 + K_4[Fe(CN)_6] \rightarrow Zn_2[Fe(CN)_6] \downarrow + 4KCl$				
	laOH test :				
$ZnCl_2$	$+ NaOH \longrightarrow Zn(OH)_2 + 2NaCl$				
Zn(Ol	$(H)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$				
		c Radical <i>Cl</i> ⁻	Basic Radical Zn ⁺²		

Aim : To analyze the given inorganic salt for acidic and basic radical.

Preliminary Investigation					
Physical state	:	Solid			
Colour	:	White $(Cu^{2+}, Fe^{+2}, Fe^{+3}, Ni^{+2}, Mn^{+2}, CO^{+2}$ are absent)			
Odour	:	No characteristic odour $(NH_4^+, CH_3COO^-, S^{2-})$ absent			
Solubility	:	Soluble in water.			

Flam Test : Apple green flam

(A) Identification of Acidic Radical a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄	No gas is evolved	Group A $(CO_3^2, S^{2-}, SO_3^{2-}, NO_2^-, CH_3COO^- absent)$
2	Salt + Conc H_2SO_4 + Heat	Reddish orange vapours which turns starch paper yellow	Group B anion (Br ⁻ may be)

(b) Confirmative test:

	Experiment	Observation	Inference
1	AgNO ₃ Test : Salt Solution +AgNO ₃	Yellow ppt.	Br ⁻ confirmed
	Dissolve ppt. in NH ₄ OH	Ppt. remains partially soluble	
2	MnO ₂ Test :	Orange red vapour of Br ₂	Br ⁻ confirmed
	Salt Solution + MnO_2 + Conc. H_2SO_4 + Heat		

B- Identification of Basic Radical

(a) Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + NaOH + heat	No smell of NH ₃	Zero Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No white Ppt	Group I (Pb ²⁺ absent)
3	To the above solution pass H_2S gas	No ppt.	Group II (Cu^{2+} , As^{+3} , Cd^{+2} , Pb^{+2} absent)
4	Boil above solution to remove H_2S and add $NH_4Cl(s) + NH_4OH$ in exess.	No ppt.	Group III [Fe ²⁺ , Fe ³⁺ ,Al ³⁺ absent]
5	To above test tube pass H_2S gas	No ppt	Group IV $[Zn^{2+}, Co^{+2}, Ni^{+2}, Mn^{+2} absent]$
6	Remove H_2S gas by boiling. Add $[NH_4]_2$ CO ₃ to it.	White ppt	V group (Ca ²⁺ , Ba ²⁺ , Sr ²⁺ may be)

Dissolved the ppt in CH₃COOH and divide in three part

(b) Confirmative test:

	Experiment	Observation	Inference
1	Potassium chromate test : $1^{st} part + K_2 CrO_4$	Yellow ppt	Ba ²⁺ confirmed
2	Ammonium sulphate Test : IInd part + (NH ₄) ₂ SO ₄	No ppt	Sr ²⁺ absent
3	Ammonium oxalate Test: IIIrd part + ammonium oxalate test $(NH_4)_2C_2O_4$	No ppt	Ca ²⁺ absent
4.	Flame test : Perform flame test with salt.	Apple green flame	Ba ²⁺ confirmed

CLASS- XII CHEMISTRY PRACTICAL 12

 $H_2SO_4 + 2HBr \longrightarrow SO_2 + Br_2 \uparrow + 2HCl$ $Starch + Br_2 \longrightarrow Yellow Colour$ **Confirmative Test:** i) Silver Nitrate test $BaBr_2 + 2AgNO_3 \longrightarrow Ba(NO_3)_2 + 2AgBr \downarrow$ (Yellow ppt) ii) MnO₂ Test :- $BaBr_2 + MnO_2 + 2H_2SO_4 \longrightarrow BaSO_4 + MnSO_4 + 2H_2O + Br_2 \uparrow$ **Chemical reaction for Basic Radical Preliminary Test :** $BaBr_2 + (NH_4)_2 CO_3 \rightarrow BaCO_3 \downarrow + 2NH_4Br$ Confirmative Test : $\frac{BaCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2Ba + CO_2\uparrow + H_2O}{(CH_3COO)_2Ba + K_2CrO_4 \longrightarrow 2CH_3COOK + BaCrO_4\downarrow}$ (Yellow ppt) 1K₂CrO₄ Test : Result : The given inorganic salt contains. Acidic Radical Br Basic Radical Ba²⁺

EXPERIMENT - 10

Aim : To analyze the given inorganic salt for acidic and basic radical. **Preliminary Investigation** Physical state Solid White $(Cu^{2+}, Fe^{+2}, Fe^{+3}, Ni^{+2}, Mn^{+2}, Co^{+2}$ are absent) Colour : Odour : No characteristic odour $(NH_4^+, S^{2-}, CH_3COO^-absent)$ Soluble in water. Solubility : No characteristic flame $(Ca^{+2}, Sr^{+2}, Ba^{+2}, Pb^{+2}, Cu^{+2}, Zn^{+2} absent)$ Flame Test :

(A) Identification of Acidic Radical

Chemical reaction for Acidic Radical

 $BaBr_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HBr$

Preliminary Test:

a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ + heat	No gas is evolved	Group A $\left(CO_3^{2^-}, S^{2^-}, SO_3^{2^-}, NO_2^-, CH_3COO^- absent\right)$
2	$Salt + Conc^{n}$ $H_{2}SO_{4} +$ Heat	Colourless, odourless, mixture of gas which turns time water milky & burns on the mouth of test tube water with blue flame	Group B $(C_2 O_4^{2-}, may be)$

(b) Confirmative test :

	Experiment	Observation	Inference
1	Calcium Chloride Test : Salt Solution + CaCl ₂	White ppt. of calcium oxalate is formed	$(C_2 O_4^{2-})$ confirmed
2	Sant Solution + CaCl2 $KMnO_4$ Test :Above ppt + dil H2SO4+ HeatAdd very dil solution of KMnO4	Pink colour of KMnO ₄ is discharged with evolution of CO_2 gas.	$(C_2 O_4^{2-})$ Confirmed

B- Identification of Basic Radical

(a) Preliminary test:

cot.			
	Experiment	Observation	Inference
1	Salt solution + NaOH +	Smell of NH ₃	Zero Group,
	heat		$(NH_4^+ present)$
	Place red litmus paper on	Red litmus turns	
	mouth to test tube	blue	

(b) Confirmative test:

	Experiment	Observation	Inference
1	To above solution, bring on glass rod dipped	White dense of NH ₄ Cl are	(NH_4^+) confirmed
	in conc. HCl near mouth of test tube.	formed	(4)
2	Nessler's Test : Solution + NaOH +	Reddish brown ppt is	(NH_4^+) confirmed
	Nessler's reagent	formed	

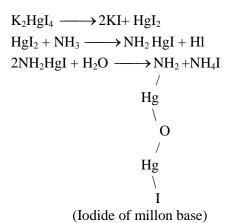
Chemical reaction for Acidic Radical Preliminary Test :

$$(NH_{4})_{2}C_{2}O_{4} + H_{2}SO_{4} \longrightarrow H_{2}C_{2}O_{4} + (NH_{4})_{2}SO_{4}$$

$$H_{2}C_{2}O_{4} \longrightarrow CO_{2} \uparrow + CO + H_{2}O$$
Confirmative Test :
i) CaCl₂ test

$$(NH_{4})_{2}C_{2}O_{4} + CaCl_{2} \longrightarrow CaC_{2}O_{4} \downarrow + 2NH_{4}Cl$$
Calcum oxalate (White ppt)
ii) KMnO_{4} Test :-
$$\frac{CaC_{2}O_{4} + H_{2}SO_{4} \longrightarrow H_{2}C_{2}O_{4} + CaSO_{4}}{2KMnO_{4} + 3H_{2}SO_{4} \longrightarrow 2MnSO_{4} + H_{2}SO_{4} + 3H_{2}O + 5[O]$$

$$H_2C_2O_4 + [O] \xrightarrow{hot}{sol^n} 2CO_2 + H_2O$$


Basic Radical

a) Preliminary test $(NH_4)_2C_2O_4 + 2NaOH \longrightarrow Na_2C_2O_4 + 2NH_3 \uparrow + 3H_2O$

 $NH_3 \uparrow \text{Re } d \text{ litmus } \longrightarrow Blue \text{ litmus}$

Confirmative Test :

Nessler's Test :

NaOH Test :

 $NH_4Cl + NaOH \longrightarrow NaCl + H_2O + NH_3(g)$

 $NH_3 + HCl \longrightarrow NH_4Cl$ (Dense white fumes)

Result : The given inorganic salt contains.

Acidic Radical – $C_2 O_4^{2-}$

Basic Radical (NH_4^+)

EXPERIMENT – 11

Aim : To analyze the given inorganic salt for acidic and basic radical. **Preliminary Investigation**

Physical state	:	Solid
Colour	:	Green (Ni ²⁺⁻ may be)
Qdour :		No characteristic odour
		(absence of CH_3COO^- , $NH_4^+S^{2-}$)
Solubility	:	Soluble in water.
Flame Test	:	No Characteristic flame
		[absence of Cu^{2+} , Pb^{+2} , Zn^{2+} , Cu^{2+} , Br^{+2})
(a) Identificat	ion of Aci	idic Radical
o Duolimi	nome toat	

(a)

a- Preliminary test :

	ш,			
		Experiment	Observation	Inference
]	1	Salt solution + dil HCl	No gas is evolved	Group A $(CO_3^{2-}, S^2, SO_3^{2-} NO_2^- CH_3 COO^- abset$
	2	$Salt + Conc^n$ $H_2SO_4 + Heat$	Colourless pungent smelling gas (HCl) is evolved which gives white dense fumes of NH ₄ Cl.	Group B anions Cl [−] may be present

(b) Confirmative test :

	Experiment	Observation	Inference
1	AgNO ₃ Test :	Curdy white ppt	Cl ⁻ confirmed
	Salt Solution + $AgNO_3$		
	Dissolve ppt. in NH ₄ OH	ppt become soluble	
2	Chromyl chloride test : Salt + $Kr_2Cr_2O_7(s)$	Reddish orange vapours	
	$(1:2) + \text{conc. } H_2 SO_4 + \text{heat}$	of chromyl chloride are	
		evolved	Cl [−] confirmed
	Pass the vapour in a test tube containing	Solution becomes Yellow	
	NaOH Solution		
		V-lless and of less	
	Add $(CH_3COOH + Pb(CH_3COO)_2)$	Yellow ppt of lead	
		chromate is formed	

B- Identification of Basic Radical Preliminary test :

	remininary cost.			
	Experiment	Observation	Inference	
1	Salt solution + NaOH +Heat	No smell of NH ₃	Zero Group, $(NH_4^+ absent)$	
2	Salt solution + dil . HCl	No white Ppt	Group I, Pb ²⁺ absent	
3	Pass H ₂ S gas through above NH ₄ Cl	No ppt.	Group II, $(Cu^{2+}, As^{+3}, Cd^{+2}, Pb^{+2})$ absent	
4	Remove H ₂ S gas by boiling & add NH ₄ Cl (s) + NH ₄ OH in excess.	No ppt.	Group III [Fe ²⁺ , Fe ³⁺ ,Al ³⁺ absent]	

5		Pass H ₂ S gas through above solution	Black ppt.	Group IV [Ni ⁺² or Co ⁺² May be
		Dissolve the ppt by boiling with aqua regia		present]
		[Conc HCl + Conc. HNO ₃] evaporate to		
		dryness & add water & divide in 2 parts.		
14	Š			

(b) Confirmative test :

	Experiment	Observation	Inference
1	DMG test : I part + DMG	Rose pink ppt.	Ni ⁺² conformed
2	NaOH Test : 2^{nd} part + NaOH	Apple green ppt	Ni+ confirmed

Chemical reaction for Acidic Radical Preliminary Test :

NiCl₂ + H₂SO₄ + heat \longrightarrow NiSO₄ + 2HCl NH₄OH + HCl \longrightarrow NH₄Cl + H₂O (White dense fumes) Confirmative Test : i) AgNO₃ test NiCl₂ + 2AgNO₃ \longrightarrow 2AgCl \downarrow +Ni(NO₃)₂ Curdy white ppt AgCl + 2NH₄OH \longrightarrow [Ag(NH₃)₂]Cl + H₂O (Diammine Silver (I) Chloride) 2) Chromyl chloride test (i) 4NiCl₂ + K₂Cr₂O₇ + 7H₂SO₄ $\xrightarrow{\Delta}$ 2KHSO₄ + 2CrO₂Cl₂ + 3H₂O + 2NiHSO₄ Cr₂O₂Cl₂ + 4NaOH $\xrightarrow{\Delta}$ Na₂CrO₄ + 2NaCl + H₂O (Sodium Chromate) Pb(CH₃COO)₂ + Na₂CrO₄ \longrightarrow PbCrO₄ + 2CH₃COONa Yellow Ppt

Identification of Basic Radical

Preliminary Test : $NiCl_2 + H_2S$

$$Cl_2 + H_2S \longrightarrow NiS \downarrow +2HCl$$

(black ppt.)

 $3NiS + 2HNO_3 + 6HCl \longrightarrow 3NiCl_2 + 2NO + 3S + H_2O$

Confirmative Test : i) DMG test

(ii) NaOH Test : $NiCl_2 + 2NaOH \longrightarrow Ni(OH)_2 + 2NaCl$ Result : The given inorganic salt contains.

Acidic Radical Cl^- Basic Radical Ni⁺²

Aim : To prepare 250 ml of 0.02 M (M/50) Mohr's Salt solution.

Apparatus Required : Chemical balance, weight box, beaker (250 ml), watch glass, volumetric flask (250 ml) glass rod, funnel, test tube.

Chemical required :- Mohr's salt, conc. H₂SO₄, Distilled water.

Theory : Molecular formula of Mohr's salt – $FeSO_4[NH_4]_2SO_4.6H_2O$ It is primary standard, hence its solution can be prepared by direct weighing. Molecular weight of Mohr's salt : $56+32+4\times16+2(14+4)+32+4\times16+6\times18 = 392$ g. Thus to prepare 1000 ml of 1M Mohr's salt solution, 392 g of Mohr's salt is needed. To prepare 250ml of 1 M Mohr's salt $\frac{392}{1000} \times 250$ ie $\frac{392}{4}$ g of mohr's salt is need.

To prepare 250 ml of 0.02 of Mohr's salt solution

 $\left(\frac{392}{4} \times 0.02\right)g$ of salt is needed. Mohr's salt

required = 1.9600 g of mohr's salt.

Observation :

- 1- Weight of empty watch galss $(W_1) = 21.7200 \text{ g}$
- 2- Weight of empty watch glass + mohrs salt (W_2) = 21.7200 + 1.9600 = 23.6800 g
- 3- Weight of Mohr's Salt $[W_2 W_1] = 23.6800 21.7200 = 1.9600 \text{ g}$
- 4- Volume of solution = 250 ml.
- 6. Morality of solution = M/50

Result : 250 ml of M/50 solution of Mohr's salt is prepared.

Precautions :

- 1- Add 2-3 ml of conc. H₂SO₄ to prevent hydrolysis of FeSO₄ before making solution of 250 ml.
- 2- Weighing should be done accurately.
- 3. Apparatus should be clean.

EXPERIMENT – 13

Aim : To prepare a standard solution of M/50 Mohr's salt solution. With its help, determine molarity and strength of $KMnO_4$ Solution.

Apparatus Required : Burette, comical flask, pipette, burette stand, test tube, white tile, watch glass, volumetric flask (250ml) beaker, funnel glass rod, weight box, wash bottle.

Chemical Required :

Mohr's Salt, $KMnO_4$ solution, dil H_2SO_4 , conc. H_2SO_4 and water.

Theory :

(a) Preparation of standard or known solution of M/50 Mohr's salt solution - Mohr's salt is a primary standard solution. Hence its solution can be prepared by direct weighting.

Molecular weight of mohr's salt : 392 g/mol

Thus to prepare 1000 ml of 1M Mohr's salt solution,

392 g of Mohr's salt is needed.

To prepare 250ml of 1 M Mohr's salt
$$\frac{392}{100} \times 250$$
 ie $\frac{392}{4}$ g of mohr's salt is need.

To prepare 250 ml of 0.02 of Mohr's salt solution $\left(\frac{392}{4} \times 0.02\right)g$ of salt is needed. Mohr's salt required = 1.9600 g

of mohr's salt.

(b) Titration of Mohr's salt Sol (standard solution) with $KMnO_4$ (unknown solution) - $KMnO_4$ is strong and versatile oxidizing agent. When its treated with Mohr's salt solution in sufficiently acidic medium Fe^{2+} ion are oxidised to Fe^{3+} in cold according to reaction :

Ionic equation :

$$MnO_{4}^{-}+5Fe^{+2}+8H^{+}\longrightarrow Mn^{2+}+5Fe^{+3}+4H_{2}O$$

Molecular equation

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$

 $5[[2FeSO_4.(NH_4)_2SO_4.6H_20] + H_2SO_4 + [O] \longrightarrow Fe_2(SO_4)_3 + 2(NH_4)_2SO_4 + 13H_2O)]$

Adding both equation

 $2KMnO_4 + 8H_2SO_4 + 10FeSO_4.(NH_4)_2SO_4 \longrightarrow 2K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 10(NH_4)_2SO_4 + 68H_2O_4 + 68H_2O_4$

Indicator \longrightarrow KMnO₄ is a self indicator

End point \longrightarrow colourless to pink

Observations:-

Preparation of standard solution :-1. Weight of empty water glass (W_1) 21.7200 g Weight of watch glass + Mohr's salt $(W_2) = 23.6800$ g Weight of Mohr's salt = $W_2 - W_1 = (23.6800 - 21.7200) g = 1.9600 g$ Volume of mohr's salt = 250 mlVolume of mohr's salt taken for each titration $(V_2) = 20$ ml Titration of standard solution with KMnO₄ Solution :-2

S.no.	Volume of Mohr's salt used (V ₁) ml	Burette initial	Reading final	Volume of KMnO4 used	Concordant Reading
1	20ml	0.0	14.8	14.8	
2	20 ml	0.0	14.6	14.6	14.6
3	20 ml	0.0	14.6	14.6	

Calculation :

 $M_1V_1 = \frac{1}{5}M_2V_2$ $M_1 \times 14.6 = \frac{1}{5} \times \frac{M}{50} \times 20$

 $M_1 = 0.0068 M$ Strength = $158 \times M = 158 \times 0.0068 M = 1.0744 g/l$

Result

Molarity of the given solution = 0.0068 M 1. **Precaution :**

$M_1 = Molarity of KMnO_4 Sol^n = ?$
$V_1 = Volume of KMnO_4 Sol^n = 14.6 ml$
M_2 = Molarity of Mohr's Salt Sol ⁿ = M/50
V_2 = Volume of Mohr's Salt Sol ⁿ = 20 ml

2. Strength of the given solution = 1.0744 g/l

Weighting should be accurate. 2.Add 2 - 3 ml of conc H₂SO₄ to prevent hydrolysis of Mohr's Salt solution. 1

While titrating, the funnel should not be placed at the top of the burette. 3.

EXPERIMENT – 14

Aim : To prepare solution of M/30 (250 ml) Mohr's salt solution. With its help, determine molarity and strength of KMnO₄ solution.

Apparatus Required : Burette, conical flask, pipette, burette stand, test tube, white tile, watch glass, volumetric flask (250ml) beaker, funnel glass rod, weight box, wash bottle.

Chemical Required :

Mohr's Salt, [FeSO₄. (NH₄)₂ SO₄.6H₂O],KMnO₄, dil H₂SO₄, conc. H₂SO₄ **Indicator :** KMnO₄ is a self indicator

End point : Colourless to pink

Theory:

(a) Preparation of standard solution of M/30 mohr's salt

Molecular formula of mohr's salt : $FeSO_4$.(NH₄)₂ SO₄.6H₂O. mohr's salt is a primary standard . Hence its solution can be prepared by direct weighing.

Thus to prepare 1000 ml of 1M Mohr's salt solution, 392 g of Mohr's salt is needed.

To prepare 250ml of 1 M Mohr's salt $\frac{392}{1000} \times 250$ ie $\frac{392}{4}$ g of mohr's salt is need.

Thus to prepare 250 ml of M/30 mohr's salt solution, $392/4 \times 1/30$ i.e, 3.2670 g of mohr's salt is needed.

(b) Titration of Mohr's salt Sol (standard solution) with $KMnO_4$ (unknown solution), $KMnO_4$ is strong and versatile oxidising agent. When its treated with mohr's salt solution in sufficiently acidic medium, Fe²⁺ ion are oxidise to Fe³⁺ according to reaction.

Ionic equation : $MnO_{4}^{-} + 5Fe^{+2} + 8H^{+} \longrightarrow Mn^{2+} + 5Fe^{+3} + 4H_{2}O$ Molecular equation : $2KMnO_{4} + 3H_{2}SO_{4} + \longrightarrow K_{2}SO_{4} + 2MnSO_{4} + 3H_{2}O + 5(O)$ $[2FeSO_{4}(NH_{4})_{2}SO_{4}.6H_{2}O + H_{2}SO_{4} + [O] \longrightarrow Fe_{2}(SO_{4})_{3} + 2(NH_{4})_{2}SO_{4} + 13H_{2}O] \times 5$ Adding both the Eqn. $2KMnO_{4} + 8H_{2}SO_{4} + 10FeSO_{4}.(NH_{4})_{2}SO_{4}.6H_{2}O \longrightarrow K_{2}SO_{4} + 2MnSO_{4} + 5Fe_{2}(SO_{4})_{3} + 10(NH_{4})_{2}SO_{4} + 68H_{2}O$

Observation Table:-

1. Preparation of standard solution:-

Weight of empty watch glass (W₁) 21.7200 g Weight of watch glass + Mohr's salt (W₂) = 21.7200+3.2670 = 24.9870g Weight of Mohr's salt = W₂ - W₁= 24.9870-217200 = 3.2670 g Volume of mohr's salt = 250 ml Molarity of mohr's salt = M/30

2. Titration of standard solution with KMnO₄ Solution :-

S.no.	Volume of Mohr's salt	Burette Reading		Volume of KMnO₄ used	Concordant Reading
	used (V ₁) ml	Initial	Final		U
1	20ml	0.0 ml	14.4 ml	14.4 ml	
2	20 ml	0.0 ml	14.2 ml	14.2 ml	14.2 ml
3	20 ml	0.0 <i>ml</i>	14.2 ml	14.2 ml	

Calculation : According to ionic eq.

$$MnO_4^- + 5 Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

5 moles of mohr's salt = 1 mole of KMnO₄
$$M_1V_1 = \frac{1}{5}M_2V_2$$

 $M_1 = Molarity of KMnO_4 = ?$

 $V_1 = Volume of KMnO_4 = 14.2 ml$

 M_2 = Molarity of Mohr's salt solution = M/30

 V_2 = Volume of Mohr's salt solution = 20 m*l*

$$M_1 \times 14.2 = \frac{1}{5} \times \frac{M}{30} \times 20$$
$$M_1 = \frac{1}{5} \times \frac{M}{30} \times \frac{20}{14.2} = 0.00938M$$

Strength of $KMnO_4 = molarity \times mol.wt.$ of $KMnO_4$.

= 1.48209 g/L

Result

- 1. Morality of the given $KMnO_4$ solution = 0.00938 M
- 2. Strength of the given $KMnO_4$ solution = 1.48204 g/L

Precaution :

- 1. Weighting should be accurate.
- 2. Add 2 3 ml of conc. H₂SO₄ to prevent hydrolysis of Mohr's Salt solution during preparation of standard solution.
- 3. In case of coloured solution (KMnO₄) upper meniscus is read

Aim : To prepare solution of M/40 oxalic acid. With its help determine the molarity and strength of given KMnO₄ solution.

Apparatus Required : Burette, conical flask, pipette, beaker (250 ml), test tube, white tiles, volumetric flask, beaker, funnel, glass rod, weight box, wash bottle.

Chemical Required : Oxalic acid, crystal, dil H₂SO₄, KMnO₄ solution

Indicator : KMnO₄ act as a self indicator.

End point : Colourless to Pink

Theory:

(a) Preparation of standard or known solution :-

Molecular formula of oxalic acid is H₂C₂O₄.2H₂O. It is a primary standard solution. Thus its solution can be prepared by direct weighing.

Molecular weight of oxalic acid = 126 g

To prepare 250 ml of 1M oxalic acid solution, 126 of oxalic acid is required. Thus to prepare 250 ml of 1M oxalic acid solution (126/4)g is oxalic acid is required.

To prepare 250 ml of M/40 oxalic acid solution.

 $\frac{126}{4} \times \frac{M}{40} = 0.7876g$ of oxalic acid is needed

(b) Titration of standard solution with KMnO₄ (unknown solution), KMnO₄ is strong and versatile oxidising agent. In sufficiently acidic medium, at about 60°C KMnO₄ oxidises oxalic acid to CO₂ and itself is reduced into colourless Mn²⁺ ion.

 $2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} + 16H^{+} \longrightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O$

Molecular equation :-

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$

$$H_2C_2O_4 + [O] \longrightarrow 2CO_2 + H_2O] \times 5$$

Adding both the eqn.

 $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$

Observation Table :-

Preparation of M/40 standard solution :-1 Weight of empty watch glass (W_1) 21.7260 g Weight of watch glass + Mohr's salt (W_2) = 21.7200+ 0.7876 = 22.5076 g Weight of oxalic acid $= W_2 - W_1$

$$= 0.7876$$
 g

Volume of oxalic acid = 250 mlMolarity of oxalic acid = M/40

2. Titration of standard solution with KMnO₄ Solution :-

S.no.	Volume of Mohr's salt	Burette Reading		Volume of KMnO₄ used	Concordant Reading
	used (V ₁) ml	Initial	final		C
1	20ml	0.0 <i>ml</i>	15.0 ml	15.0 ml	
2	20 ml	0.0 ml	14.9 ml	14.9 ml	14.9 ml
3	20 ml	0.0 ml	14.9 ml	14.9 ml	

2.

Calculation : According to ionic equation .

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$

 \therefore 1 mole of oxalic acid required 2/5 mole of KMnO₄.

 $\therefore M_1 V_1 = 2/5 M_2 V_2$

 M_1 = molarity of KMnO₄ solution = ? V_1 = molarity of KMnO₄ solution = 14.9 ml M_2 = molarity of oxalic acid solution = M/40 V_2 = volume of oxalic acid solution. = 20 ml

$$M_1 \times 14.9 = \frac{2}{5} \times \frac{1}{40} \times 20 \Longrightarrow M_1 = 0.0135M$$

Strength of KMnO₄ = Molarity \times Mol.wt.= 0.0135 M \times 158 = 2.1345 g/L

- Result
- Molarity of the given $KMnO_4$ solution = 0.0135 M 1.

Strength of the given $KMnO_4$ solution = 2.1345 g/L 2.

Precaution: 1. Oxalic acid should not be heated about 60°C.

weighing should be accurate.

Aim : To prepare solution of M/20 oxalic acid with its help determine the morality and strength of given KMnO₄ solution.

Apparatus Required : Burette, conical flask, pipette, beaker, test tube, weight box, white tiles, volumetric flask beaker, funnel glass rod, weight box, wash bottle.

Chemical Required : Oxalic acid, crystal, dill H₂SO₄, KMnO₄ solution

Indicator : KMnO₄ act as a self indicator.

End point : Colourless to Pink

Theory:

(a) Preparation of standard or known solution :-

Molecular formula of oxalic acid is H₂C₂O₄.2H₂O. It is a primary standard solution. Thus its solution can be prepared by direct weighting.

Molecular weight of oxalic acid = 126 g

 \therefore molar mass = 126 g/l

To prepare 1000 ml of 1M oxalic acid solution, 126 of oxalic acid is required

To prepare 250 ml of 1M oxalic acid solution (126/4)g is oxalic acid is required.

 \therefore To prepare 250 ml of M/20 oxalic acid solution.

 $\frac{126}{4} \times \frac{1}{20} = 1.5750g$ of oxalic acid is needed

(b) Titration of standard solution with KMnO₄ (unknown solution): KMnO₄ is strong and versatile

Oxidizing agent. When it is titrated against standard oxalic acid solution (reducing agent) in sufficiently acidic medium at above 60° C, KMnO₄ oxidizes acid into CO₂ and itself gets reduced to colourless Mn⁺²ions.

Molecular Equation :

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$
$$H_2C_2O_4 + [O] \longrightarrow 2CO_2 + H_2O] \times 5$$

Adding both equation : $2KMnO_4 + 3H_2SO_4 + 5 \text{ COOH}$. $2H_2O \rightarrow K_2SO_4 + 2MnSO_4 + 8 H_2O + 10CO_2$ Ionic equation : $MnO_4^- + 8H^+ + 5e^{(-)} \longrightarrow Mn^{2+} + [4H_2O] \times 2$

$$C_2 O_4^{2-} \longrightarrow 2CO_2 + 2e^-] \times 5$$

$$2KMnO_{4}^{-} + 16H^{+} + 5C_{2}O_{4}^{2-} \longrightarrow 2Mn^{2+} + 8H_{2}O + 10CO_{2}$$

Observation Table :

a) Preparation of M/20 oxalic acid solution :

Weight of water glass $(W_1) = 21.7200g$

Weight of watch glass + weight of oxalic acid $(W_2) = 23.2950$ g

 \therefore weight of oxalic acid $(w_2 - w_1) = 1.5750g$

Volume of oxalic acid used for each titration = 250 ml.

Titration of standard solution with unknown Solution :-3.

S.no.	Volume of Mohr's salt used (V ₁) ml	Burette	Reading	Volume of KMnO ₄ used	Concordant Reading
1	2.0 ml	0.0 ml	15.1 ml	15.1 ml	
2	2.0 ml	0.0 ml	14.8 ml	14.8 ml	14.8 ml
3	2.0 ml	0.0 ml	14.8 ml	14.8 ml	

Calculation : According to the ionic eq.

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ ∴1 mole of oxalic acid required 2/5 mole of KMnO₄. $\therefore M_1 V_1 = 2/5 M_2 V_2$ $\frac{2}{5} \times \frac{M}{20} \times \frac{20}{14.8} = 0.027M$

Strength of KMnO₄ used = Molarity \times molar mass = 0.027 \times 158 = 4.2702 g/l Result 2.

1. Molarity
$$= 0.0270 \text{ M}$$

Strength = 4.2702 g/L

 $M_1 = Molarity of KMnO_4 Sol^n = ?$

 $V_1 = Volume of KMnO_4 Sol^n = 14.8 ml$ $M_2 = Molarity \ of \ Oxalic \ acid \ Sol^n = M/20$

 $V_2 =$ Volume of Oxalic acid Solⁿ = 20 ml

Precaution : 1. Weighting should be accurate .

2. Always remove funnel from burette while titrating the solution.

Aim : To identify the functional group in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper, litmus (blue), NaHCO₃, conc. H_2SO_4 , NH₄OH, FeCl₃.

Physical Properties:			
State:	Solid		
Colour:	White		
Odour:	Vinegar Like		
Flammability:	Burn with non sooty flame (Aliphatic)		

Preliminary test :

S.no.	Experiment	Observation	Inference
1	Litmus test :	Litmus solution turns from	-COOH or – OH may be
	Organic compound + 2 drops of litmus solution.	blue to red.	present
2	Organic compound + NaHCO ₃ solution.	Colourless, odorless gas	-COOH group may be or –
		with brisk effervescence.	OH (phenol group present.

Confirmatory test :

S.no.	Experiment	Observation	Inference
1	Ester test : Organic compound + $C_2H_5OH + conc. H_2SO_4$ + Heat	Fruity smell of ester	$ \begin{array}{c} \hline O \\ \parallel & \text{grp} \\ - C & - OH \end{array} $
2	FeCl ₃ Test : Organic compound + dil FeCl ₃ solution .	Red colour appear	confirmed. O \parallel - C - OH confirmed

Chemical Reaction: NaHCO₃ Test: RCOOH + NaHCO₃ \longrightarrow RCOONa+CO₂ \uparrow + H₂O Easter Test: $RCOOH + R - OH \xrightarrow[H_2SO_4]{conc} RCOOR' + H_2O$

(Fruity smell ester)

FeCl₃ Test : RCOOH + NH₄OH \longrightarrow RCOONa

 $RCOONa + H_2O \longrightarrow Ammoniac \ salt \ (Soluble)$

 $RCOONH_4 + FeCl_3 \longrightarrow (RCOO)_3 Fe + 3NH_4Cl$

 $(\text{RCOO}_3)\text{Fe} + \text{H}_2\text{O} \longrightarrow \text{Fe}(\text{OH}) (\text{R COO})_2 + \text{RCOOH}$

Basic ferric acetate.

Result :

The functional group present in the given organic compound is carboxylic acid

$$\begin{pmatrix} O \\ \parallel \\ - C & - OH \end{pmatrix}$$

Aim : To identify the functional group in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper litmus (blue) solution, dil HCl, NaOH, Na metal, dil H₂SO₄, CH₃COOH.

Physica	l Properties:			
State:		Liquid		
Colour:		Colourless		
Odour:		Spirit Like		
Water Solubility:		Soluble in Water		
Flammability:		Burn with non-sooty flame (Alipha	atic)	
Prelimi	nary test :		-	
S.no.	Experiment		Obser	

S.no.	Experiment	Observation	Inference
1	Organic compound + blue litmus solution.	No change	-COOH or – OH(Phenol)
			group absent
2	Organic compound + dil HCl + NaOH	No ppt. or oily layer	- NH ₂ grp. Absent
3	Organic comp + Na metal	H ₂ gas evolved	- OH (alcohol) Group may be

Confirmatory test :

S.no.	Experiment	Observation	Inference
1	Cerric ammonium nitrate	Red colour	- OH group.
	Test :		confirmed
	Organic compound + cerric		
	ammonium nitrate		
2	Ester Test :	Fruity smell of	- OH grp.
	Organic compound +	ester.	confirmed
	$CH_3COOH + Conc. H_2SO_4$		
	(1-2 drops) + Heat.		

Chemical reaction : 1- Na Metal tes

Na Metal test : -	
2ROH + 2Na - OH —	$\rightarrow 2RONa + H_2 \uparrow$

```
2- CERRIC AMMONIUM NITRATE TEST :

2ROH + (NH_4)_2 Ce(NO_3)_6 \longrightarrow (ROH)_2 Ce(NO_3)_4 + 2NH_4NO_3

(Red Colour)

3- Easter Test :

ROH + R'COOH \xrightarrow{conc}_{H_2SO_4} R'COOR + H_2O

Alcohol acid ester
```

Result : The functional group present in organic compound is alcohol group (-OH).

Aim : To identify the functional group in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper litmus (blue) $NaHCO_{3}$, FeCl₃ Solution, Phthalic anhydride, Con. H₂SO₄, NaOH.

Physical Properties:

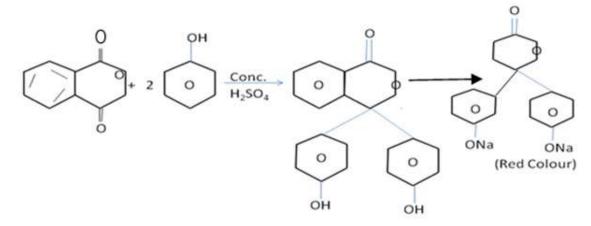
J~	
State:	Solid
Colour:	White
Odour:	Phenolic Smell
Water Solubility:	Water insoluble
Flammability:	Burn with non-sooty flame (Aromatic)

Preliminary test :

S.no.	Experiment	Observation	Inference
1	Organic compound + blue	Blue litmus turn	-COOH or
	litmus solution.	Red	phenolic – (OH)
			may be
2	NaHCO ₃ test :	No effervescence	- COOH absent
	Organic compound +		Phenolic group
	NaHCO ₃ solution.		may be

Confirmatory test:

S.no.	Experiment	Observation	Inference
1	FeCl ₃ Test :	Green blue or	Phenolic (- OH)
	Organic compound + $FeCl_3$	violet	group. confirmed
		colouration	
2	Phthalic test :	Intense green	Phenol (- OH) grp.
	Organic compound +	blue or red	Confirmed
	pthalic acid + 2-3 drops	colouration	
	$H_2SO_4 + \Delta$.then cool and		
	dil. NaOH		


Chemical Reaction :

Confirmative test :

FeCl₃ test

 $3C_6H_5OH + FeCl_3 \longrightarrow Fe(OC_6H_5)_3 + 3HCl$

(Ferric phenoxide) (Violet)

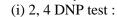
Result : The given organic comp. contains phenolic (-OH) group.

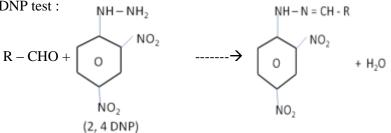
Aim : To identify the functional group in present in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper, litmus solution, 2,4 DNP, dil HCl, NaOH, reagent, Fehling solution, Schiff reagent.

Physical Properties:	-
State:	Liquid
Colour:	Colourless
Odour:	Pungent
Water Solubility:	Soluble in Water
Flammability:	Burn with non-sooty flame (Aliphatic)

Preliminary test :


S.no.	Experiment	Observation	Inference
1	Organic compound + blue	No change	-COOH or
	litmus solution.		phenolic group
			absent
2	Organic compound +	No ppt or oily	- NH ₂ gup.
	NaOH+ dil HCl	layer	Absent
3	Organic comp $+ 2$ ml of 2,	Orange – red ppt.	- CHO or ketonic
	4 DNP shake & allow it to		- group present.
	stand.		


Confirmatory test :

S.no.	Experiment	Observation	Inference
1	Schiff's solution test :	Pink colour	-CHO group present
	Organic compound + 2 ml of Schiff's reagent.	Obtained	
2	Fehling's solution test : Organic compound +	Red ppt.	- CHO grp present.
	Fehling's solution $(A + B)$ + boil in a water bath		

Chemical reaction :

1- Preliminary test :

(aldchyde – 2, 4 dil nitro phenyl hydrazone) (Orange – red ppt)

b) **Confirmatory Test :**

(1) Fending's test : -

$$Cu(OH)_2 \xrightarrow{Rochell's} CuO + H_2O$$

 $R - CHO + 2CuO \longrightarrow Cu_2O + R - COOH$
(Red ppt)
 $R - CHO + 2Cu^{2+} + 5OH^{(-)} \longrightarrow RCOO^{(-)} + Cu_2O + 3H_2O$

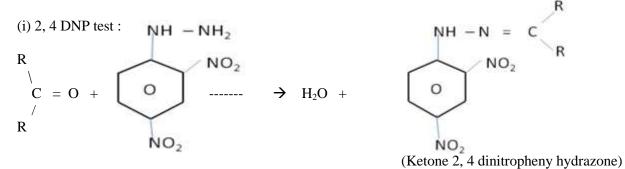
Result : Given organic compound contains aldehydic group. (- CHO)

Aim : To identify the functional group in present in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper, litmus solution, 2,4 DNP, dil HCl, NaOH, sodium, nitro pruside, meta dinitro benzene

Physical Properties:	
State:	Liquid
Colour:	Colourless
Odour:	Nail paint remover like
Water Solubility:	Water soluble
Flammability:	Burn with non-sooty flame (Aliphatic)
Proliminary test .	

Preliminary test :


S.no.	Experiment	Observation	Inference
1	Organic compound + blue litmus	No change	-COOH or
	solution.		phenolic group
			absent
2	Organic compound + NaOH+ dil	No ppt or oily	- NH_2 gup.
	HCl	layer	Absent
		-	
3	Organic comp $+ 2$ ml of 2, 4 DNP	Orange – red ppt.	- CHO or ketonic
	shake & allow it to stand.		- group present.

Confirmatory test:

S.no.	Experiment	Observation	Inference
1	Organic compound + sodium nitro prusside + 2	Red colour or wine	-CHO group present
	– 3 drops of NaOH and shake.	red colour	
2 Organic compound + Meta dinitrobenzene +		Violet colour which	Ketonic grp confirmed.
	NaOH	fades on standing.	

Chemical reaction :

1- **Preliminary test :**

b- Confirmatory test :

(i) Sodium Nitroprousside Test :

0

$$\begin{array}{ccc} \| \\ CH_3 - & C & -CH_3 + OH^{(-)} \longrightarrow CH_3 COCH_2^{(-)} + H_2 O \end{array}$$

$$\begin{bmatrix} Fe(CN)_5 NO \end{bmatrix}^{2^-} + CH_3 \quad C \quad - \quad C \stackrel{\Theta}{H}_2 \dots \rightarrow \begin{bmatrix} & O & \\ & \parallel & \\ Fe(CN)_5 NO \quad CH_3 - \quad C \quad - \quad CH_2 \end{bmatrix}^{-3}$$

Result : Given organic compound contains Ketonic group (>C = 0)

Aim : To detect the given food stuff.

Appeartus required : Test tube, test tube stand, test tube holder, burner etc.

Theory : Carbohydrates are Polyhydroxy aldehydes or polyhydroxy ketones, their derivatives and the substance which yield them on hydrolysis carbohydrates are classified as sugars and non sugars. Sugars like glucose, fructose and cane sugar are crystalline. Among sugars, glucose, fructose and lactose are reducing while sucrose is non reducing sugar.

Test :

	Experiment	Observation	Inference
1	Conc. H ₂ SO ₄ test:	Charring with	Carbohydrates present.
	Sample +	burnt sugar	
	Conc. H_2SO_4 + Heat	smell.	
2	Molisch test :	Reddish purple	Carbohydrates present.
	Aq. Solution of sample + 2	ring in formed	
	drops of 1% α naphthol	at the junction	
	+ conc. H ₂ SO ₄ .	of 2 layers	
3	Fehling solution test :	Red ppt	Reducing
	Sample solution + 1 ml of		Sugar present
	fehling $A + 1 ml$ of Fehling B		
	$+\Delta$		
4	Tollens reagent :	Silver mirror is	Reducing sugar present.
	Aq. Solution of sample $+2$	formed along	
	ml of Tollens eagent + Δ	the surface of	
		test tube.	
5	Benedit's Solution test:	Red ppt	Reducing sugar present
	Aq solution of sample +		
	Benedict's reagent + Heat		
6	Iodine test :	Violet colour	Starch is present.
	Sample Solution + few drops		
	of iodine solution		

Result : Carbohydrates is present.

EXPERIMENT – 23

Aim : To detect the given food stuff.

Apparatus required : Test tube stand, test tube holder, burner etc.

Theory : Fats and oil are esters of long chain fatty acids and glycerol and thus also called glycerides. Fats contains saturated fatty acids while oil contain unsaturated fatty acids. **Test :**

Experiment	Observation	Inference
Spot Test : Put a small amount of	Translucent spot	Fat is present.
sample on a filter paper and press	appears on the filter	
with another filter paper.	paper	
Acrolein test :	Irritating smell	Fat is present
Take a few drops of sample in a	appears due to the	
test tube. Add few drops of	form of acrolein	
potassium bisulphite to it and	vapours.	
Heat.		
Solubility test :	Sample does not	
Take a small amount of sample in	dissolve in H ₂ O but is	
3 test tubes. Add water, alcohol	soluble in alcohol on	
and chloroform in 1, 2, 3 test	heating and soluble	Fat is present
tube respectively.	in chloroform.	
	Spot Test : Put a small amount of sample on a filter paper and press with another filter paper . Acrolein test : Take a few drops of sample in a test tube. Add few drops of potassium bisulphite to it and Heat. Solubility test : Take a small amount of sample in 3 test tubes. Add water, alcohol and chloroform in 1, 2, 3 test	Spot Test : Put a small amount of sample on a filter paper and press with another filter paper .Translucent spot appears on the filter paperAcrolein test : Take a few drops of sample in a test tube. Add few drops of potassium bisulphite to it and Heat.Irritating smell appears due to the form of acrolein vapours.Solubility test : Take a small amount of sample in 3 test tubes. Add water, alcohol and chloroform in 1, 2, 3 testSample does not dissolve in H2O but is soluble in alcohol on heating and soluble

Result : Fat is present.

Aim : To detect the given food stuff.

Apparatus required : Test tube stand, test tube holder, glass rod, burner etc.

Theory : Proteins are high molecular mass, long chain polymers composed of α amino acid. Amino acids are molecule that have both -NH₂ and -COOH group. **Test :**

S.no.	Experiment	Observation	Inference
1.	Biuret test : Sample + NaOH +	Bluish violet colour	Protein is present
	Dil CuSO ₄ solution	appears	
2.	Xanthoprotein test :	Yellow ppt.	Protein is present
	Sample + few drops of		
	$conc.HNO_3 + \Delta$		
3.	Million's test :	White ppt	Protein is present
	Sample + 2 drops of millions	which changes to	
	reagent + Δ	brick red on boiling	
4.	Ninhydrin test :	Blue colour appear	Protein is present
	Protein sample + Few drops of		
	ninhydrin solution + Boil the		
	contents for 1 minute		

Result : Protein is present.